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Abstract  15 
The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable 

source of information to monitor the NOX emissions that adversely affect air quality. We conduct a series of 

experiments using a 4 × 4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April 

– September 2019 in east Texas to evaluate the multiple challenges that arise in reconciling the NOX emissions in 

model simulations with TROPOMI. We first compare the TROPOMI NO2 version 1.3 and version 2.3.1 algorithms 20 
in east Texas and document that tropospheric vertical column NO2 increases +17% in urban areas, with further 

increases (~25%) in the city centers and smaller increases (~5%) in less polluted areas. We then demonstrate the 

importance of having lightning NOX emissions in a model simulation that is compared to satellite observations. 

Lightning NOX can contribute up 24% of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas 

urban areas. NOX emissions, when using locally resolved inputs, agree with TROPOMI NO2 version 2.3.1 to within 25 
20% in most circumstances, with a small NOX underestimate in Dallas-Fort Worth (– 13%) and Houston (– 20%). In 

the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements: the 

satellite consistently underrepresents the NO2 from measured stack emissions by 40 – 60%. We hypothesize that 

either: 1.) TROPOMI has difficulty capturing narrow point source plumes, 2.) the assumed lifetime to derive the 

NOX emissions is too long, or 3.) the vertical/horizontal dispersion in the model is too slow. If we assume short 30 
effective NO2 lifetimes (<1 hour), there is better agreement between the satellite-derived NOX emissions and the 

model. To understand ozone formation regimes in the area, we combine NO2 column information with HCHO 

column information. For HCHO, we find good agreement in far eastern Texas and an underestimate (– 25%) in the 

areas of central Texas that have less biogenic VOC emissions. Ozone formation regimes at the time of the early 

afternoon overpass are NOx-limited almost everywhere in the domain except the Baytown section of Houston and in 35 
the presence of power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning 

hours that TROPOMI cannot observe. Having more in situ measurements of the vertical distribution of NO2 in rural 

and urban areas, and in the presence of power plant plumes would give us more confidence in our results.  
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1 Introduction 

Nitrogen oxides (NOX ≡ NO+NO2) are a group of reactive trace gases toxic to human health (Burnett et al., 2004; He 

et al., 2020; Khreis et al., 2017) that can be converted into other chemical species, including ozone and fine particulate 

matter (Jacob, 1999). There are some natural emissions of NOX (e.g., lightning, soil), but the majority of the NOX 

emissions are from anthropogenic sources (Van Vuuren et al., 2011). Anthropogenic NOX emissions in polluted areas 5 
can be estimated using NO2 column measurements from satellites (Lamsal et al., 2011; Leue et al., 2001; Martin, 

2003; Stavrakou et al., 2008) if the meteorology, NO2 photochemical lifetime, tropospheric/stratospheric components, 

and NOX/NO2 ratio are all properly accounted for (Beirle et al., 2011; de Foy et al., 2014; Goldberg et al., 2020).  

Satellite instruments can observe NO2 from space because it has strong absorption features within the 400 – 465 nm 

wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of 10 
NO2 in the atmosphere between the instrument and the surface can be derived; this technique is called differential 

optical absorption spectroscopy (DOAS) (Platt, 1994). The first satellite instrument to utilize the DOAS technique to 

observe NO2 air pollution was Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999) launched in 

1995 (320 × 40 km2 spatial resolution) and was followed by the Ozone Monitoring Instrument (OMI) (Levelt et al., 

2006) launched in 2004 with vastly improved pixel resolution (24 × 13 km2 at nadir) and instrument stability 15 
(Schenkeveld et al., 2017). Initial studies used OMI NO2 satellite data to pinpoint NOX emissions in the vicinity of 

large power plants (Duncan et al., 2013; Kim et al., 2009; Russell et al., 2012) and in areas with high population 

densities (Boersma et al., 2008; Lamsal et al., 2008, 2010).  

TROPOMI (Veefkind et al., 2012) builds upon the overwhelming success of OMI (Levelt et al., 2018) and has pixel 

resolution and instrument stability that are even more advantageous for observing urban scale NO2 pollution. Most 20 
recently, TROPOMI has been used to estimate NOX emissions (Beirle et al., 2019; Dix et al., 2022; de Foy and 

Schauer, 2022; Goldberg et al., 2019b; Griffin et al., 2019; Lorente et al., 2019) and its changes during the COVID-

19 lockdowns (Bauwens et al., 2020; Cooper et al., 2022; Goldberg et al., 2020; Liu et al., 2020; Souri et al., 2021; 

Sun et al., 2021; Wang et al., 2020). The high spatial resolution of TROPOMI makes it an excellent instrument to 

observe some of the fine-scale structure of NO2 pollution, such as within cities (Demetillo et al., 2020; Geddes et al., 25 
2021; Goldberg et al., 2021; Ialongo et al., 2020; Zhao et al., 2020), near power plants (Saw et al., 2021; Shikwambana 

et al., 2020), near ships (Georgoulias et al., 2020), in the presence of wildfires (Griffin et al., 2021; Jin et al., 2021), 

and in the presence of oil and gas operations (van der A et al., 2020; Dix et al., 2022; Ialongo et al., 2021). 

Studies in the mid 2010s (Canty et al., 2015; Curier et al., 2014; Harkey et al., 2015; Kemball-Cook et al., 2015; Souri 

et al., 2016; Travis et al., 2016) described the synergistic use of satellite NO2 and regional chemical transport model 30 
simulations to better quantify NOX emissions. These studies compared satellite data to model simulations directly 

while also accounting for vertical sensitivity differences between the satellite and model simulation. Results from 

these studies were mixed, but generally found that satellite NO2 was larger than the model data in rural areas and 

smaller than the model in urban areas. These studies suggested a potential overestimate of NOX emissions in U.S. 
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urban areas, and demonstrated the importance of stratospheric transport, lightning NOX emissions, soil NOX emissions, 

and NO2 chemical recycling.  

For simulations of 2018 and more recent years, TROPOMI data have been used for model evaluations (e.g., 

Community Multiscale Air Quality (CMAQ) modeling system, Long Term Ozone Simulation European Operational 

Smog (LOTOS-EUROS) model). Most studies show high correlations, but larger NO2 columns in the model in major 5 
urban areas and near large point sources. This result is persistent across regions including Korea (Kim et al., 2020), 

Europe (Skoulidou et al., 2021), and North America (Lawal et al., 2021; Li et al., 2021). Judd et al. (2020) examined 

NO2 in New York City using TROPOMI version 1.3 (v1.3) NO2 data and aircraft/ground-based spectrometer 

measurements and found that the satellite underestimated NO2 by 19-33%. Verhoelst et al. (2021) also found a satellite 

low bias (23 – 51%) in v1.3 when comparing to ground-based measurements suggesting an algorithm change is a 10 
necessary. 

There appears to be three primary causes for the low bias in the v1.3 algorithm: 1.) a persistent high bias of the cloud 

pressure retrieved with the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm 

(van Geffen et al., 2021), 2.) the relatively coarse model a priori vertical NO2 profiles (1° × 1°) which underestimate 

the near-surface NO2 in polluted regions and are needed for the conversion of the satellite slant column into a vertical 15 
column (Goldberg et al., 2017), and 3.) the spatial heterogeneity in pointwise-to-gridded data comparisons (Souri et 

al., 2022). The TROPOMI version 2.3.1 (v2.3.1) NO2 algorithm includes an improved way to estimate cloud pressure 

and addresses reason #1. Reason #2 can be remediated by incorporating high-resolution spatial information. Judd et 

al. (2021) reported that when information from higher resolution chemical transport models were included in the 

calculation of the air mass factor, TROPOMI NO2 values increased by approximately 12 – 14% in an urban area.  20 

This study examines these and other challenges that arise in comparing photochemical grid models and TROPOMI 

NO2. We conduct a series of experiments using a high-resolution simulation over east Texas and evaluate multiple 

issues that arise in evaluation with TROPOMI. We examine the impact of the revised TROPOMI algorithm (Section 

3.1), the impact of lightning emissions and other sources of NO2 in the free troposphere (Section 3.2), accounting for 

TROPOMI’s vertical sensitivity (Section 3.3), and evaluating the ability of TROPOMI to resolve urban areas and 25 
power plants (Section 3.4).  While each of these issues involves disparate aspects of model methodology and 

chemistry, in fact they are intertwined in the correct interpretation of satellite and model results. Based on these results, 

we consider the ability of TROPOMI to inform emission quantification (Section 4.1) and evaluate ozone sensitivity 

along with formaldehyde (HCHO) retrievals (Section 4.2). Based on these results, we offer best practice 

recommendations for TROPOMI model evaluation and future work. 30 
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2 Methods 

2.1 CAMx model simulation 

For our analysis, we use a 4 × 4 km2 Comprehensive Air quality Model with extensions (CAMx) simulation version 

7.00 centered over eastern Texas driven off-line by Weather Research Forecast (WRF) model version 4.0.3. The 4 × 

4 km2 domain is nested inside 12 × 12 km2 and 36 × 36 km2 two-way domains, shown in Figure 1. We ran the WRF 5 
and CAMx models for the 2019 Texas ozone season, March 15 – October 15. Only model output between April 1 

through Sept 30 are used for this study. We use the 0.25° × 0.25° Global Forecasting System data assimilation system 

as initial conditions for the WRF meteorological model, and is also used for boundary conditions and data assimilation. 

The WRF simulation had 43 vertical levels between the surface and 50 hPa, with approximately 21 layers below 700 

hPa. The 43 WRF vertical layers were mapped to 28 vertical layers for the CAMx model simulations; all 21 layers 10 
below 700 hPa were mapped without merging. The CAMx simulation was utilized with the Carbon Bond Version 6, 

Revision 4 (CB6r4) chemical mechanism (Emery et al., 2016). 

 
Figure 1. CAMx 36/12/4 km modeling domains. Image underlaid is from © Google Maps. 

For this study, we use a projected 2020 Texas Commission on Environmental Quality (TCEQ) modeling inventory 15 
from a 2017 TCEQ inventory, which is different from the National Emission Inventory (NEI). The 2020 modeling 

emissions inventory did not include impacts of the socioeconomic response to COVID-19, which was advantageous 

for this application since we modelled the 2019 ozone season. TCEQ developed the 2020 modeling emissions 

inventory for the Dallas-Fort Worth and Houston-Galveston-Brazoria Attainment Demonstration State 
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Implementation Plan revision (Johnson et al., 2018). Within Texas, emissions were calculated using locally resolved 

inputs, such as mobile emissions from MOVES2014a adjusted based on traffic statistics from the Highway 

Performance Monitoring System. Outside of Texas, NEI estimates were used such as the default outputs from 

MOVES2014 and the 2014 EPA NEI.  

We included hourly-specific power plant emissions using measurements from the EPA’s Clean Air Markets 5 
Division (CAMD) (https://www.epa.gov/airmarkets). Large power plants use Continuous Emissions Monitoring 

Systems (CEMS) to report emissions of sulfur dioxide (SO2), NOx, and CO2, along with other parameters such as 

heat input, as required by the federal Clean Air Act. We downloaded hourly data from EPA’s Air Markets Program 

Data (AMPD) website for the continental US for March through October 2019. Stack parameters were based on 

EPA’s 2017 NEI data. The 2017 NEI data with matching facilities in Texas were then adjusted to their 2019 annual 10 
totals. Table 1 provides the annual inventory NOx emission rates for four cities within a 50 km radius of the city 

center and three power plants examined in detail in this study. 

Table 1. NOX emission rates for 2019 from the four largest metropolitan areas and three largest power plants within 
our model domain. For the cities, the fraction of emissions allocated to on-road mobile sources are also noted. 

Location 
NOx emissions 

(Gg/yr) 
Fraction on-road 

mobile sources 

Dallas-Fort Worth (city) 58 0.34 

Houston (city) 86 0.24 

San Antonio (city) 35 0.24 

Austin (city) 23 0.27 

Martin Lake (power plant) 8.4 N/A 

Limestone (power plant) 7.1 N/A 

Sam Seymour (power plant) 5.8 N/A 
 15 

Biogenic emissions were estimated for 2019 from the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) version 3.1 and fire emissions from Fire INventory of NCAR (FINN) version 1. We included lightning 

NOx (LNOX) emissions with the CAMx LNOX processor using the 2019 WRF meteorological data.  In-line inorganic 

iodine emissions (IX) from saltwater areas and iodine chemistry are also included.  

2.2 TROPOMI  20 

TROPOMI was launched by the European Space Agency (ESA) for the European Union’s Copernicus S5P satellite 

mission in October 2017.  The satellite follows a sun-synchronous, low-earth (825 km) orbit with an equator overpass 

time of approximately 13:30 local solar time.  TROPOMI measures total column amounts of several trace gases in the 

Ultraviolet-Visible-Near Infrared-Shortwave Infrared (UV-VIS-NIR-SWIR) spectral regions. At nadir, pixel sizes are 

3.5 × 7 km2 (modified to 3.5 × 5.5 km2 on August 6, 2019) with the edges having slightly larger pixels sizes (~14 km 25 
wide) across a 2600 km swath, equating to 450 rows (van Geffen et al., 2020). The instrument observes the swath 
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approximately once every second and orbits the Earth in about 100 minutes, resulting in daily global coverage.  NO2 

slant column densities are derived from radiance measurements in the 405 – 465 nm spectral window of the UV-VIS-

NIR spectrometer. Tropospheric vertical column density data, which represent the vertically integrated number of 

NO2 molecules per unit area between the surface and the tropopause, are then calculated by subtracting the 

stratospheric portion and then converting the tropospheric slant column to a vertical column using an air mass factor 5 
(AMF).  The AMF is a unitless quantity used to convert the slant column into a vertical column and is a function of 

the satellite viewing angles, solar angles, the effective cloud radiance fraction and pressure, the vertical profile shape 

of NO2 provided by a chemical transport model simulation (for operational data the TM5-MP model is used at 1 × 1° 

resolution) (Williams et al., 2017), and the surface reflectivity (for operational data, climatological Lambertian 

Equivalent Reflectivity is used at a 0.5 × 0.5° resolution) (Kleipool et al., 2008).  The operational AMF calculation 10 
does not explicitly account for aerosol absorption effects, which are accounted for in the effective cloud radiance 

fraction. 

For our analysis we use both the v1.3 off-line (OFFL) algorithm, which was operational during the April through 

September 2019 timeframe, and the v2.3.1 Products Algorithm Laboratory (PAL) algorithm, released in December 

2021 and includes updates to the cloud retrieval scheme (decrease in cloud pressure), the surface albedo (to avoid 15 
negative cloud fractions), and the quality flags (better screening of snow). The net result of the change in tropospheric 

vertical column NO2 from v1.3 to v2.3.1 has been reported to be a +13% increase for cloud-free scenes that varies 

spatially, and is higher in polluted areas (van Geffen et al., 2021). For the domain-wide comparisons, we screened 

TROPOMI NO2 and HCHO for quality assurance flag values greater than 0.75. As a polar-orbiting satellite with an 

afternoon overpass, care must be taken in the interpretation of TROPOMI column retrievals as an indicator of near-20 
surface emissions (Penn and Holloway, 2020; Streets et al., 2013). TROPOMI provides “snapshots” at the same time 

each day, except as limited by cloud cover, surface albedo, or instrument errors.  

For comparison with CAMx, we gridded TROPOMI data to the model to create a custom “Level-3” data product for 

comparison with each other or model data on a common grid. Though our Level-3 data product is on an equivalent 

horizontal grid as the model, the satellite a priori (used in the retrieval) and CAMx have different vertical resolutions 25 
and distributions of NO2. To limit artificial differences when doing the comparisons in this work, additional processing 

is done two ways.  

1. Applying the Averaging Kernel: The most user-friendly approach involves creating a model simulated 

satellite NO2 column using the CAMx profile and a TROPOMI data product-specific “averaging kernel,” 

which may be described as the weights used to calculate a weighted vertical integral (we refer to this as AK). 30 
To apply the averaging kernel to the model simulation, we multiply the partial tropospheric columns by the 

averaging kernel at each vertical level (e.g., multiply the partial columns by ~1.5 at 10 km, by ~1 at 2 km, 

and by ~0.5 near the surface) to account for the retrieval sensitivity at different altitudes. We applied the 

gridded TROPOMI NO2 averaging kernel in a similar manner to previous work (Deeter, 2002; Harkey et al., 

2015, 2020).  35 
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2. Re-calculating the AMF: In a second approach, we instead use daily partial vertical NO2 columns from 

CAMx and the tropospheric averaging kernel to recalculate a new TROPOMI AMF. The tropospheric slant 

column is then divided by the recalculated AMF to generate day-specific recalculated tropospheric vertical 

column NO2 (Goldberg et al., 2017; Judd et al., 2020). This new satellite measurement can then be compared 

directly to the tropospheric vertical column NO2 from the CAMx model simulation. 5 

Methods for both these pathways are documented in the TROPOMI NO2 Product User’s Manual (Eskes et al., 2021). 

2.3 Deriving NOX emissions from TROPOMI NO2 

2.3.1 Exponentially modified Gaussian fitting method 

To derive NOX emissions from the polluted areas of east Texas, an exponentially modified Gaussian (EMG) function 

is fit to a collection of NO2 plumes observed from TROPOMI. The original methodology, proposed by Beirle et al. 10 
(2011), involves the fitting of satellite line densities to an EMG function.  Line densities are the integral of the column 

NO2 retrieval perpendicular to the path of the plume; the units are mass per distance. We rotate each day’s plume 

based on the wind direction, so that all daily plumes are artificially in the same horizontal direction (Lu et al., 2015; 

Valin et al., 2013). The 100-m wind speed and direction are obtained from the ERA5 re-analysis project (Hersbach et 

al., 2020). Once all daily plumes are rotated and aggregated together, the EMG statistical fit can be applied as 15 
expressed as Equation (1): 

𝑂𝑀𝐼	𝑁𝑂&	𝐿𝑖𝑛𝑒	𝐷𝑒𝑛𝑠𝑖𝑡𝑦	 = 𝛼 1 2
34
𝑒𝑥𝑝 7 8

34
+ :;

&34;
− 3

34
=Φ 73?8

:
− :

34
=@ + 𝛽  (1) 

where α is the total number of NO2 molecules observed near the pollution source, excluding the effect of background 

NO2, β; xo is the e-folding distance downwind, representing the length scale of the NO2 decay; µ is the location of the 

apparent source relative to the assumed pollution source center; σ is the standard deviation of the Gaussian function, 20 
representing the Gaussian smoothing length scale; Φ is the cumulative distribution function.  Using the ‘curvefit’ 

function in IDL, we determine the five unknown parameters: α, xo, σ, µ, β based on the independent (distance; x) and 

dependent (NO2 column line density) variables.  

Using the mean ERA5 100-m wind speed, w, the mean effective NO2 lifetime τeffective and the mean NOX emissions 

can be calculated from the fitted parameters xo and α, as expressed in Equation (2): 25 

𝑁𝑂3	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1.32 I J
KLMMLNOPQL

R , where 𝜏TUUTVWXYT =
34
Z

   (2) 

A factor of 1.32 is the mean column-averaged NOX / NO2 ratio and is the widely used value to convert the NO2 to 

NOX in polluted regions (Beirle et al., 2021). 
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2.3.2 Flux divergence method 

Emissions were also estimated using the flux divergence method (Beirle et al., 2019) : 

𝑁𝑂3	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 1.32 7∇ ⋅ (𝑉𝐶𝐷 ⋅ u) + bcd
K
=      (3) 

Fluxes of NO2 were obtained by multiplying NO2 vertical column densities (VCDs) with wind speeds (u) in orthogonal 

directions (along and across the swath tracks). The divergence of the fluxes yields an emission estimate in units of µg-5 
m−2 s−1. Sinks of NO2 are included in the equation by adding VCD divided by the atmospheric lifetime of NO2, τ, 

which was taken from the EMG fit. Estimates of NOx emissions are obtained by multiplying the estimates by the ratio 

of NOx to NO2, which is the same 1.32 value as the EMG method (Beirle et al., 2021). The fluxes were calculated 

using the same 100-m ERA5 wind product used for the EMG estimates. The winds were linearly interpolated to the 

daily swath grid. This method follows de Foy and Schauer (2022) with minor modifications. The quality assurance 10 
flag threshold was set to 0.75 to be consistent with EMG. The central 250 pixels (out of 450) were used for swaths 

from October 2019 through September 2021. Although this period does include the COVID-19 lockdowns, the 

October 2019 through September 2021 timeframe does not show time-averaged NO2 values more than 10% different 

than the year prior, and is well within the uncertainty of this analysis. Two-dimensional Gaussian fits were obtained 

using the method described in de Foy et al. (2014). For the Dallas urban area, the algorithm identified 11 separate 15 
source regions which were each represented by a separate two-dimensional Gaussian. The lifetime is linearly 

dependent on the length scale and inversely proportional to the wind speed (tau = L / 2U). For the length scale we use 

the geometric mean of the radii of the Gaussian ellipses, which were calculated using the covariance matrix. 
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3 Results and Discussion 

3.1 Comparison between TROPOMI version 1.3 and version 2.3.1 algorithms 

To elucidate the effects of the recent TROPOMI NO2 algorithm change from v1.3 to v2.3.1, we compare both within 

our model domain. As expected, the v2.3.1 algorithm yields consistently larger values than the v1.3 algorithm in most 

areas of our east Texas domain (Figure 2). The largest increases by both magnitude and percentage occur in the most 5 
polluted areas. We find an average increase of +16.6% in urban counties, with a maximum increase of +45% in the 

most polluted section of east Houston. Increases exceeding +20% also occur in the vicinity of large point source 

emissions. In the rural areas of east Texas, we generally observe small increases less than +5%. We fit a linear 

regression to a scatterplot of the tropospheric vertical columns from both algorithms in the urban counties, and find a 

slope of 1.30 and a negative intercept, which further confirms that the algorithm change affects the most polluted areas 10 
more strongly than the moderate and low polluted areas.  

 

Figure 2. (Left) NO2 tropospheric vertical column amounts from the TROPOMI NO2 v2.3.1 algorithm screened 
with a quality assurance flag greater than 0.75. (Center) The ratio between the NO2 tropospheric vertical column 
amounts from the v2.3.1 algorithm compared to the v1.3 algorithm. (Right) A scatterplot and linear fit between the 15 
two TROPOMI NO2 products used in panel b. Urban area is defined as the five counties surrounding the largest five 
cities (Houston, Dallas, Fort Worth, San Antonio, and Austin). Rural area is everywhere outside those counties. 
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3.2 Effects of free tropospheric NO2 and lightning NOx  

In order to compare model simulation output to satellite data, it is important to understand free tropospheric NO2 

(Marais et al., 2018, 2021) and understand its effects on the satellite retrieval (Silvern et al., 2019). TROPOMI has 

greater sensitivity to the upper portion of the troposphere and this must be accounted for in any comparison with model 

output. In the right panels of Figure 3, we show the sensitivity of TROPOMI to NO2 at different levels of the 5 
atmosphere (green line). In Texas during summer 2019, TROPOMI was three times as sensitive to NO2 at an altitude 

of 10 km (tropospheric averaging kernel = 1.5) as compared to the surface (tropospheric averaging kernel = 0.5). This 

demonstrates that NO2 at the tropospheric/stratospheric interface (~12 km altitude), such as lightning NOX (Zhu et al., 

2019) and cruising aircraft emissions, can have an outsized effect on the satellite measurement. To facilitate a 

comparison, model simulated column amounts can be adjusted by “applying the averaging kernel”, which will be 10 
discussed in Section 3.3. 

For this study, we conducted two CAMx simulations: with and without lightning NOX emissions. The tropospheric 

NO2 vertical profiles for eastern Texas, Dallas, and Houston are shown in the left side panels of Figure 3. In a CAMx 

simulation without lightning NOX, average NO2 concentrations between 2.5 – 10 km averaged 20 ppt for the eastern 

Texas domain. This can be compared to free tropospheric (>2.5 km) NO2 concentrations from the NASA Studies of 15 
Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign 

within our east Texas model domain, but in 2013 instead of 2019. Measured NO2 concentrations between 2.5 – 10 km 

averaged 50 ppt during the SEAC4RS campaign. This also compares the ~40 ppt estimate from OMI using a cloud-

slicing methodology in the central US during June – August 2005 – 2007 (Marais et al., 2018). When lightning NOX 

emissions are included in CAMx, the free tropospheric NO2 between 2.5 – 10 km increases from 20 ppt to 33 ppt, but 20 
there is still a slight underestimate compared to SEAC4RS data between 2.5 – 6 km. The small underestimate shown 

in the CAMx simulation with lightning NOX emissions compared to the SEAC4RS data in the 2.5 – 6 km altitude 

range could be due the decrease in anthropogenic NOX emissions between 2013 and 2019. Collocated vertical NO2 

measurements in time and space would be needed to evaluate this further.  
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Figure 3. (Left) NO2 vertical concentration profiles between the surface and 12 km altitude from the CAMx model 
with (orange) and without (red) lightning NOx emissions for April through Sept 2019, and median NO2 in situ 
observations acquired during the Aug – Sept 2013 NASA SEAC4RS field campaign (black) for (top) E Texas 
average, (middle) Dallas and (bottom) Houston. (Right) NO2 shape profiles from the same two model simulations 5 
and the TROPOMI tropospheric averaging kernel for the same locations. 
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The inclusion of lightning NOX emissions increases seasonal column tropospheric NO2 by an average of 0.16 × 1015 

molecules-cm-2 in the model simulation during April through September 2019 (Figure 4). This increase varies 

spatiotemporally due to the prevalence of thunderstorms, however when averaged over 6 months, the increase is 

relatively homogeneous. The inclusion of lightning NOX emissions most affects the satellite-model comparison in 5 
rural areas, but is also relevant in urban areas. The 0.16 × 1015 molecules-cm-2 increase yields an increase in the 

tropospheric column NO2 of +7.8% in urban areas, +15% in the rural areas of eastern Texas, and up to +24% over the 

Gulf of Mexico. For the rest of this paper, only the CAMx simulation with the inclusion of lightning NOX emissions 

will be analyzed. 

 10 

 
Figure 4. NO2 tropospheric vertical column amounts from the CAMx model with and without lightning NOx 
emissions averaged during April through Sept 2019 at the coincident TROPOMI overpass time (~19 UTC). Areas 
with invalid TROPOMI data are similarly screened out from the model out on a daily basis. Urban area is defined as 
the five counties surrounding the largest five cities (Houston, Dallas, Fort Worth, San Antonio, and Austin). Rural 15 
area is everywhere outside those counties. 

 

https://doi.org/10.5194/acp-2022-299
Preprint. Discussion started: 27 April 2022
c© Author(s) 2022. CC BY 4.0 License.



13	
	

3.3 Applying the averaging kernel and re-calculating the air mass factor 

To compare a chemical transport model simulation to satellite data, one must account for the differing assumptions 

about the vertical NO2 distributions between model and satellite. One can either apply the averaging kernel from the 

satellite instrument to the NO2 column from the model simulation or use the NO2 vertical profile from the model 

simulation and the averaging kernel to re-calculate AMF and tropospheric NO2 vertical column of the satellite 5 
measurement. Typically studies either use one of the two methods; here we use both.  

The comparison between the model and model with the tropospheric averaging kernel (AK) applied is shown in the 

left column of Figure 5. In rural areas, the modeled tropospheric column NO2 will artificially increase, while the urban 

NO2 will artificially decrease. Upon application of the AK, the tropospheric column NO2 in the model simulation 

artificially increases in rural areas by +15.4%, while the urban NO2 will artificially decrease. The latter due to most 10 
NO2 being below 2 km due to large NOX emissions near the surface in urban areas where AK < 1. 

Once the tropospheric averaging kernel is applied, it can be compared to the satellite directly (top row of Figure 5). In 

Dallas-Fort Worth and Houston, there are lower amounts of NO2 in the model simulation in the most polluted areas 

of the city, but generally good agreement (+0.4%) when the five urban areas (Dallas, Fort Worth, Houston, San 

Antonio, Austin) are averaged together. In the rural areas of east Texas, there are slightly larger amounts (+10.7%) in 15 
the model simulation than as observed by TROPOMI, but these absolute differences are small. The largest 

disagreements between CAMx and TROPOMI occur in the vicinity of large point sources. This disagreement near 

large point sources suggests that either TROPOMI has difficulty capturing the full magnitude of the NOX emissions 

in the presence of narrow point source plumes, or that vertical/horizontal dispersion in the model is not quick enough; 

we hypothesize that it is a combination of both.  20 

While applying the averaging kernel to a regional model simulation is an appropriate way to compare model 

simulations with satellite data, it does so by artificially adjusting the high-resolution model simulation to be following 

the coarse resolution (1.0° × 1.0°) of the TM5 model simulation used to originally process the AMF. Instead, 

incorporating the high-resolution model vertical profiles in the calculation of the AMF, while more computationally 

intensive, results in satellite measurements incorporating higher spatial resolution information; in urban areas this 25 
yields satellite measurements that have greater spatial heterogeneity. 

In the middle row of Figure 5, we show a comparison between the model and the satellite with the CAMx-derived 

AMF. In this comparison, we get similar conclusions as mentioned earlier: the model has systematically smaller NO2 

amounts than TROPOMI in Dallas-Ft Worth and Houston, and larger amounts in rural areas. The agreement between 

the satellite measurement with a new AMF applied and model simulation is very marginally different than when the 30 
averaging kernel is applied to the model simulation and compared to the satellite measurement directly.  The 

percentage difference calculations differ primarily because the denominator (i.e., TROPOMI value) is a different 

magnitude in each case. We attribute this small difference to the rounding errors in the interpolation of the averaging 

kernel to the CAMx model pressure levels. 
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Figure 5. (Top row) NO2 tropospheric vertical column amounts from CAMx and TROPOMI v2.3.1 re-processed 
with a priori profiles from the CAMx model with lightning NOx emissions, and difference averaged across April 
through September 2019. (Middle row) NO2 tropospheric vertical column amounts from CAMx with the averaging 
kernel applied, the TROPOMI v2.3.1 product and difference averaged across April through September 2019. (Bottom 5 
row) Difference between top and middle rows. Areas with invalid TROPOMI data are similarly screened out from 
the model out on a daily basis. Urban area is defined as the five counties surrounding the largest five cities (Houston, 
Dallas, Fort Worth, San Antonio, and Austin). Rural area is everywhere outside those counties. 
 
 10 

https://doi.org/10.5194/acp-2022-299
Preprint. Discussion started: 27 April 2022
c© Author(s) 2022. CC BY 4.0 License.



15	
	

3.4 Localized TROPOMI vs. CAMx NO2 comparison 

We evaluate three versions of the TROPOMI seasonal average against the CAMx model simulation: TROPOMI v1.3, 

TROPOMI v2.3.1, and TROPOMI v2.3.1 with CAMx AMFs. A comparison of these satellite products versus CAMx 

are shown for four metropolitan areas (Dallas (DFW), San Antonio (SAT), Austin (AUS), and Houston (HOU) in 

Figure 6. Comparing TROPOMI v1.3 to CAMx directly without application of the averaging kernel (which is not 5 
recommended) suggests a model high bias of +24.2% but moderately good correlation (r2=0.71). When updating to 

TROPOMI v2.3.1, the model high bias is reduced (+8.4%) in urban areas. We then use the a priori profiles from the 

CAMx simulation to recalculate the AMF and find that the original model high bias in urban areas becomes a low bias 

of -0.1%, and becomes a larger low bias in the most polluted sections of the cities (consistent with our Discussion in 

Section 3.3). The low model bias is most pronounced in east Houston and the downtown area of Dallas. For Dallas-10 
Fort Worth, there also appears to some spatial misallocation: NO2 near the DFW airport is larger in the model than 

the satellite, while NO2 in the downtown areas of Dallas and Fort Worth is smaller in the model than the satellite. In 

San Antonio and Austin, there is a small model overestimate, which becomes worse near the large point sources on 

the periphery of the city. Overall, however, there is generally good performance between CAMx NO2 and TROPOMI 

NO2, which is within 20% in most cases. The 20% is well within the expectation of TROPOMI accuracy and precision. 15 
The nonpoint NOX emissions input into the model simulation (e.g., mobile, nonroad, and area sources) generally are 

within the uncertainty of the satellite measurement, and we would not recommend a substantial alteration to the 

inventory for these sector emissions. This exercise demonstrates the importance of both the systematic low bias in the 

v1.3 algorithm and the importance of utilizing the AMF when comparing satellite data to model simulations.  

 20 
Figure 6. NO2 tropospheric vertical column amounts averaged across April through September 2019 from TROPOMI, 
TROPOMI bias-corrected, TROPOMI-bias corrected and with new AMF, TROPOMI bias-corrected with new AMF 
and downscaled, and CAMx for the largest four cities (Dallas, San Antonio, Austin and Houston). (Right) Scatterplot 
showing slope and correlation of various TROPOMI configurations and CAMx 
 25 
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To evaluate the performance of TROPOMI in observing point source emissions, we compare TROPOMI NO2 

measurements at the locations of three power plants with stack measurements: Martin Lake, Limestone and Sam 

Seymour (Figure 7). In each case, TROPOMI substantially underestimates NO2 at the locations of these power plants 

even when the new algorithm and recalculated AMF are both applied. We have previously found better agreement 

between TROPOMI NO2 and the stack measurements for the Colstrip Power Plant in Montana and San Juan / Four 5 
Corner complex in New Mexico (Goldberg et al., 2019). The reason for the substantial disagreement in Texas is still 

unknown, but we do not believe this repudiates the prior evaluation for urban areas. We hypothesize that a combination 

of the narrow plumes (smaller than the size of an individual 7 × 3.5 km2 TROPOMI pixel) and especially short 

effective NO2 lifetime (brisk wind speeds, high oxidation capacity due to large amounts of VOCs and water vapor, 

and high solar zenith angles) are hindering an accurate TROPOMI measurement. The two power plants in New Mexico 10 
and Montana are located in areas with smaller nonpoint and biogenic NOX emissions, lighter wind speeds, less VOCs 

and water vapor, and higher elevations; all of these factors cause the satellite sensor to be more sensitive to the NOX 

emissions. We hypothesize that the relatively homogeneous distribution of NO2 in urban areas equivalent to or larger 

than the size of an individual TROPOMI pixel causes the satellite to better capture the magnitude of NO2 in urban 

areas. Future work should focus on evaluating the NO2 from power plants, such as in situ measurements from aircraft 15 
and ground-based vertical column instruments (e.g., Pandora (Herman et al., 2009)). 

 
Figure 7. NO2 tropospheric vertical column amounts averaged across April through September 2019 from TROPOMI 
v1.3, TROPOMI v2.3.1, TROPOMI v2.3.1 with new AMF, and CAMx for the largest three power plants in East Texas 
(Martin Lake [Lat: 32.25 º N, Lon: 94.58º W], Limestone [Lat: 31.42º N, Lon: 96.25º W], and Sam Seymour [Lat: 20 
29.92º N, Lon: 96.75º W]). (Right) Scatterplot showing slope and correlation of various TROPOMI configurations 
and CAMx 
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4 Policy-relevant findings based on TROPOMI-model evaluation  

4.1 TROPOMI NOX emissions 

In order to calculate NOX emissions directly, we need to account for the NO2 lifetime and NO2 background 

concentrations. The first technique we use is the exponentially modified Gaussian (EMG) method. We first apply the 

EMG method to the CAMx simulations of the NO2 plume originating from the Limestone Power Plant (Latitude: 5 
31.42º N, Longitude: 96.25º W). By comparing the known emissions with the inferred top-down emissions, we can 

evaluate assumptions in the EMG model. The amount of NOX emissions input into the model within a 12 km radius 

of the facility are 9.8 Gg/yr of which 7.1 Gg/yr are from the power plant itself. The top-down EMG method applied 

to the CAMx simulation yields a NOX emissions rate of 13.1 Gg/yr. The disagreement between the NOX emissions 

inventory (9.8 Gg/yr) and the inferred CAMx NOx emissions driven by the inventory (13.1 Gg/yr), must be due an 10 
incorrect assumed effective lifetime, which in part could be due to meandering winds. Winds rarely have a consistent 

direction and instead meander due to boundary layer turbulence and frictional effects yielding a slower effective speed 

in the wind direction over long distances (>10 km). If we assume that the effective speed of the NO2 plume to be 25% 

slower than the unidirectional wind speed for the 6-month average, the inferred top-down emissions can be made to 

match the known emissions (9.8 Gg/yr). 15 

Applying the CAMx-based effective plume speed to analysis of TROPOMI (25.2% slower than the unidirectional 

wind speed), we find that TROPOMI NO2 v1.3 product yields an estimated NOX emissions rate of 4.6 Gg/yr, is 

increased to 5.2 Gg/yr when using the TROPOMI v2.3.1 algorithm, and further increased to 6.0 Gg/yr when using the 

TROPOMI v2.3.1 algorithm with a recalculated AMF (Table 2 & Figure 8). Even with all known corrections applied, 

it appears that TROPOMI is not capturing the full magnitude of NOX emissions from the power plant and vicinity (9.8 20 
Gg/yr) which is consistent with the discussion in Section 3.4.  

Table 2. NOX emission rates for Dallas – Fort Worth and the Limestone Power Plant from the TCEQ Emissions 
Inventory and various iterations of the TROPOMI NO2 algorithm  

Data Source Data Source 
Type 

Dallas-Fort Worth NOx 
emissions (Gg/yr) 

Limestone PP NOx 
emissions (Gg/yr) 

TCEQ Projected 2020 Inventory Bottom-up 55 9.8 

TROPOMI NO2 v1.3 Top-down 45 ± 16 4.6 ± 1.7 

TROPOMI NO2 v2.3.1 Top-down 56 ± 20 5.2 ± 1.9 

TROPOMI NO2 v2.3.1 CAMx AMFs Top-down 62 ± 22 6.0 ± 2.2 
 

For the Dallas – Fort Worth area, if we apply the same method to the CAMx simulation, we get an effective NOX 25 
emissions rate of 55 Gg/yr from the metropolitan area. This is equivalent to the NOX emissions aggregated within a 

47 km radius of the Dallas – Fort Worth metropolitan area (Latitude: 32.85º N, Longitude: 96.95º W), and is roughly 

equivalent to two-sigma of the Gaussian plume (σ = 23.7 km). 
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Using the TROPOMI v1.3 algorithm, which has a noted low bias (Judd et al., 2020; Verhoelst et al., 2021), we 

calculate a top-down NOX emissions rate of 45 Gg/yr. This is increased to 56 Gg/yr when the TROPOMI v2.3.1 

algorithm is used and further increased to 62 Gg/yr when a CAMx AMF is used (Table 2 & Figure 8). The difference 

between the 62 Gg/yr calculated directly from the TROPOMI v2.3.1 with a recalculated AMF and the 55 Gg/yr 

effective emissions rate from CAMx represents a small 13% low bias that is within the uncertainty of the satellite and 5 
the assumptions made to facilitate the comparison. The technique was applied to other urban areas, but those cities 

have large point sources at the periphery of the urban areas which adversely affected the calculation of the effective 

NO2 needed to calculate the NOX emissions. 

 
Figure 8. EMG method to derive NOX emissions from the TROPOMI NO2 v2.3.1 with CAMx AMFs applied to 10 
(left) Dallas-Fort Worth and (right) Limestone Power Plant. The colorbar for the right panel is halved to better show 
the NO2 plume near Limestone. ERA5 100-m winds are used to rotate daily TROPOMI NO2 plumes. 
 
The top-down approach can also calculate effective NO2 lifetimes. For Dallas – Fort Worth, the method calculates an 

effective NO2 lifetime of 1.7 hours. The same approach applied to CAMx yields an effective NO2 lifetime of 1.1 hours. 15 
This suggests that the effective NO2 lifetime in CAMx is too short. The effective lifetime is a function of the 

photochemical lifetime as well as the horizontal/vertical advection. This could be modified in a model simulation by 

increasing the NO2 chemical lifetime (e.g. slower photolysis, slowing the NO2+OH reaction rate, faster recycling of 

NOZ (NOZ = Alkyl nitrates, PAN, and HNO3) back to NO2) or increasing vertical advection (NO2 has a longer lifetime 

at higher altitudes). Chemical NO2 lifetimes are well-constrained by laboratory studies, so we hypothesize that too 20 
slow vertical transport may be the primary culprit for this disagreement, and is also suggested by the analysis presented 

in Figure 3, which suggests a model low bias in the free troposphere using measurements from the SEAC4RS 

campaign. Future vertical NO2 measurements separated by altitude will be critical to answering this question. 

The total error associated with the magnitude of the top-down versus bottom-up comparison is calculated to be 36%, 

and is the sum of the quadrature of five potential sources of error: the tropospheric vertical column measurement in 25 
urban areas (20%), the wind speed & direction (25%), the “clear-sky” bias (10%) which for these purposes is a 

result of emissions being different on clear-sky days compared to cloudy days, the NOx/NO2 ratio (10%) 

(Kimbrough et al., 2017), and the random error of the statistical EMG fit (10%) (de Foy et al., 2014). This total 
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uncertainty is approximately 20% smaller than similar methods using OMI. For further information on this method 

or the uncertainties associated with this method, please see other literature (de Foy et al., 2014; Goldberg et al., 

2019a; Lu et al., 2015; Verstraeten et al., 2018). 

We then test the flux divergence method (Beirle et al., 2019, 2021; de Foy and Schauer, 2022) on the same two 

sources: Dallas and Limestone Power Plant. We apply the flux divergence method to the native TROPOMI pixels 5 
rather than a re-gridded version of the data. Figure 9 shows that TROPOMI columns distinguish between a large 

hotspot over Dallas and a smaller one over Fort-Worth. The flux divergence method was able to resolve source regions 

with better detail, with estimates for some of the individual point sources and sub-areas within Dallas. In particular 

the area including the Dallas-Fort-Worth International Airport appears as a distinct source area. In Table 3, we show 

the NOX emissions aggregated for these two sources, using both an infinite NO2 lifetime and the effective “short” NO2 10 
lifetime provided by the EMG method (τ =1.7 h for Dallas-Fort Worth and τ = 0.5 h for Limestone PP). The results 

from the flux divergence method are consistent with the results from the EMG method (i.e., Dallas NOX is within 20% 

and power plants NOX are biased low) provided that an accurate lifetime is used. 

Table 3. NOX emission rates for Dallas – Fort Worth and the Limestone Power Plant from the TCEQ Emissions 
Inventory and various iterations of the Flux Divergence Method using the TROPOMI NO2 v2.3.1 algorithm 15 

Data Source 
Dallas-Fort Worth 

NOx emissions (Gg/yr) 
Limestone PP  

NOx emissions (Gg/yr) 

TCEQ Projected 2020 Inventory 55  9.8 

TROPOMI NO2 v2.3.1, Infinite NO2 Lifetime 24 ± 9 1.6 ± 0.4 

TROPOMI NO2 v2.3.1, Short NO2 Lifetime 62 ± 16 3.4 ± 1.1 
 

 
Figure 9. Oversampled TROPOMI NO2 in the Dallas-Fort Worth metropolitan areas using the (left) tropospheric 
vertical columns and (right) the flux divergence of the tropospheric vertical columns. Image underlaid is from © 
Google Earth. 20 
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4.2 Evaluating ozone sensitivity using the HCHO-NO2 ratio 

Satellite observations of formaldehyde (HCHO) can be combined with NO2 to determine the ozone sensitivity to NOX 

emissions using the formaldehyde to nitrogen dioxide column density ratio (FNR) (Duncan et al., 2010; Jin et al., 

2017; Jin and Holloway, 2015; Martin et al., 2004). HCHO may be used to estimate short-lived VOC emissions, 

anthropogenic and biogenic combined, which often quickly oxidize to HCHO in the presence of sunlight and the 5 
hydroxyl (OH) radical (Wolfe et al., 2016; Zhu et al., 2017). In a similar manner to NO2, column HCHO can be 

compared to chemical transport models in order to better understand the spatial variability of VOC emissions. Harkey 

et al. (2020) found that a regional model captured the general spatial and temporal behavior of satellite estimates, but 

tended to underestimate column HCHO in the western U.S. TROPOMI HCHO measurements have been rigorously 

evaluated using ground-based spectrometers and the v1.1 algorithm was found to be biased low by approximately 10 
25% (de Smedt et al., 2021). 

As a first step in ozone sensitivity analysis, we compare column HCHO comparison between CAMx and TROPOMI. 

Since HCHO spatial patterns have less heterogeneity than NO2, due to a large fraction of HCHO originating from 

biogenic precursors during warm season months, column HCHO amounts are less sensitive to the application of the 

AK than with NO2. In Houston, a city where anthropogenic VOCs are sufficiently large, this assumption may not be 15 
fully applicable. However, Houston was not a focus of this project.  

 
Figure 10. HCHO total vertical column amounts from (a) TROPOMI, (b) TROPOMI bias-corrected and (c) the CAMx 
regional model averaged across April through September 2019 at the coincident TROPOMI overpass time (~19 UTC). 
Areas with invalid TROPOMI data are similarly screened out from the model out on a daily basis. The Eastern and 20 
Central Texas areas are denoted by the dashed lines 
 
Total column TROPOMI HCHO measurements using the v1.1 algorithm are biased low by approximately 25% (De 

Smedt et al., 2021). We then create a bias-corrected (b-c) product (multiply by a factor of 1.25) to account for this low 

bias. In Figure 10, we compare the operational TROPOMI HCHO v1.1 product and TROPOMI HCHO v1.1 b-c 25 
product to CAMx total columns amounts sampled at coincident timeframes. CAMx underestimates HCHO in Central 

and Western Texas, but in Eastern Texas the magnitude and spatial patterns match better. Themodel bias is -7.9% in 
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Eastern Texas and -25.0% in Central Texas compared to the TROPOMI HCHO v1.1 b-c product. This model bias, in 

both cases, is within the uncertainty of the satellite retrieval. 

We apply the FNR to TROPOMI and CAMx to determine how well CAMx is representing ozone formation regimes. 

Initial studies showed that when the FNR in a region exceeds 2, the ozone formed is considered to be limited by the 

amount of NOx present in the air.  When the FNR is below 0.5, the ozone formed is considered to be limited by the 5 
amount of VOCs.  Ratio values between 0.5 and 2 indicate sensitivity to both NOx and VOCs (Duncan et al., 2010). 

More recent studies have demonstrated that the upper bound of the transitional regime could be as high as 4 (or even 

higher) depending on regional characteristics (Jin et al., 2017, 2020; Schroeder et al., 2017).  

For this analysis, using the v1.1 HCHO and v1.3 NO2 algorithms is sufficient, since both products have similar biases 

related to the cloud schemes that may cancel out when a ratio is calculated. For this project, we use a value of 4 to 10 
indicate the transition between NOX and VOC sensitivity, while simultaneously noting that this value should not be 

static in all scenarios.  In Figure 11, the ratios from the satellite and model are shown.  

 
Figure 11. Formaldehyde – NO2 – Ratio (FNR) in Texas averaged across April through September 2019 using the 
(left) operational TROPOMI products (center left) operational TROPOMI HCHO product and TROPOMI NO2 15 
product with new AMFs and (right) CAMx column amounts. Only CAMx data coincident with the overpass time and 
valid TROPOMI pixels are included. 

On a regional scale, there is excellent spatial agreement between the satellite and model. When aggerated on an urban 

scale, the model ratio values are marginally lower than the satellite derived ratios, especially in San Antonio and 

Austin. This model low bias is improved when the AMF of the NO2 product is recalculated. Consistent with the 20 
analyses presented in Sections 3.3 and 3.4, the model appears to be capturing both the HCHO and NO2 spatial patterns 

with satisfactory performance and therefore it should be no surprise that the ozone production regimes are also 

captured well. The only areas of strong disagreement are in the presence of power plant plumes and large point sources, 

which TROPOMI appears to be not fully characterizing.  
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The downside of low-earth orbiting instruments is the consistent measurement during the early afternoon. This early 

afternoon measurement time coincides with a temporary dip in NOX emission rates, which are largest in the early 

morning and late afternoon, and the peak of the biogenic emissions, which often peak at the time of the maximum 

daily 2-m temperature. We use the CAMx model to investigate the temporal variation in the FNR. In Figure 12, we 

show that the FNR has a temporary maximum in urban areas around 14:00 local time and a minimum around 8:00 5 
local time, with a secondary minimum around 20:00 local time. In the rural areas of East Texas, the variation of the 

FNR is even more substantial than in the urban areas, and even in these rural areas, ozone production might be VOC-

limited during early morning hours. Therefore, an early afternoon satellite measurement suggesting NOX-limited 

conditions does not eliminate the possibility of VOC-limited ozone formation conditions in the early morning. This 

suggests that targeted VOC controls in urban areas of Texas between 6:00 – 10:00 local time could be an effective 10 
way to further reduce ozone concentrations, in addition to expanded NOX controls at all hours. Upcoming observations 

from the Tropospheric Emissions Monitoring of POllution (TEMPO) instrument, which will be located in 

geostationary orbit, which further help answer this question.  

 
Figure 12. Diurnal cycles of column NO2, column HCHO, and the HCHO/NO2 ratio from CAMx for these regions in 15 
our model domain: Houston, Dallas-Fort Worth and Rural East Texas (Cass County). The approximate TROPOMI 
overpass time of 13:30 local time is denoted by the dotted line. 

5 Conclusions  

In this study, we find that NOx emissions in Texas urban areas, when using locally resolved inputs, agree with 

TROPOMI to within 20% in most circumstances. We find some statistically insignificant evidence that NOX emissions 20 
in Dallas – Fort Worth and Houston, TX may be underestimated. The underestimates are well within the uncertainty 

of the methods presented herein. Upgrading the TROPOMI NO2 algorithm from the v1.3 to v2.3.1 showed better 

agreement with the model. 

In the presence of large power plant plumes, we find statistically significant differences between our top-down 

estimates and the bottom-up observations. Because the NOX emissions from these power plants are known, we 25 
hypothesize that either: 1) TROPOMI is not fully observing the magnitude of power plants NO2 plumes, 2.) the 

effective NO2 lifetime used to derive the NOX emissions is too long, or 3) the vertical/horizontal dispersion in the 
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model is too slow. More work should be dedicated to investigating power plant plumes, including aircraft and vertical 

profilers (e.g. Pandora). NOX emissions from power plants are released at a higher altitude, where dispersion is 

quicker, and this could be a source of disagreement. 

In the rural areas of east Texas, we find generally good agreement to within 20% in most circumstances between the 

model with lightning NOX emissions and TROPOMI NO2. In rural regions of east Texas, we demonstrate that >50% 5 
of the column NO2 is above 2 km in altitude demonstrating the influence of the free troposphere. Lightning NOX 

emission can represent up to 24% in our east Texas domain, and presumably could be larger in more isolated tropical 

regions. Since free tropospheric NO2 has an outsized effect in rural areas, it is critical to have an accurate estimate of 

free tropospheric NO2 before conducting a model to satellite comparison in these regions. In particular, more aircraft 

measurements between the top of the boundary layer and the stratosphere-troposphere interface would be helpful. 10 

In our comparison between TROPOMI HCHO and CAMx column HCHO, we find excellent agreement in far eastern 

Texas and the Ozarks, but an underestimate in central Texas. This is consistent with Harkey et al. (2020), which 

showed a model underestimate in the Western U.S. More work should be done to evaluate HCHO and VOCs in areas 

with assumed less biogenic emissions. 

In a last step, we evaluate the ozone formation regimes at the time of the early afternoon TROPOMI overpass. We 15 
find that ozone production is NOx-limited almost everywhere in the domain except the Baytown section of Houston 

and in the presence of power plant plumes. There are likely NOx-saturated ozone formation conditions in the early 

morning hours that TROPOMI cannot observe.  

We are encouraged by the future observational strategies that could help tackle some of the remaining questions 

presented herein. In early 2023, TEMPO will be acquiring column NO2 measurements during all daylight hours in the 20 
presence of low amounts of clouds. When coupled with the current ground monitoring network, this will elucidate 

some of the unknown NO2 photochemistry and boundary layer dynamics, giving us more confidence in the 

understanding NO2 satellite retrievals. Most critically, having more in situ measurements of the NO2 vertical 

distribution and NO2 in the presence of power plant plumes might give us some information to resolve some of the 

current disagreements between the regional chemical transport models and TROPOMI.  25 
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Appendix A. CAMx model simulation performance  

We evaluated CAMx NOx and ozone surface concentrations using data collected at TCEQ Continuous Air Monitoring 

Stations (CAMS). We evaluated performance by five geographical sub regions: Austin, San Antonio, Waco, Tyler, 

and Dallas-Fort Worth. NOx monitors deployed for routine monitoring have limitations for NO2. These monitors 

measure NO and consequently NO2 is chemically converted to NO for measurement. The converter also captures other 5 
compounds including peroxyacyl nitrate (PAN) and a portion of HNO3 (Dickerson et al., 2019). These NOx monitors 

have a detection limit of around 1 ppb but differentiation between NO and NO2 is less accurate near the detection 

limit. Therefore, we compare both CAMx NOx (i.e., NO + NO2) and NOy (i.e., NO + NO2 + PAN compounds + 

HNO3) to monitored NOx in Figure A1. Hourly ozone measurements were aggregated to 8-hour maximum daily 

averages (MDA8) and hourly NO2 measurements were aggregated to early afternoon averages (12-3 PM CST) to 10 
correspond with TROPOMI overpass time. 

Figure A1 displays the O3 and NO2 performance in the CAMx simulation compared to ground monitors. High 

observed NOx detected by ground monitors in urban areas (e.g. > 10 ppb) are not resolved at the 4 km CAMx 

horizontal grid resolution. For example, Dallas Hinton St (CAMS 0401) is located 0.9 km from a major freeway 

interchange and 200 m from a busy road (Mockingbird Lane). In contrast, Tyler Airport (CAMS 0082) is in a rural 15 
location removed from busy roads and the nearby airport is regional and not highly trafficked. When compared with 

monitored NOx in less polluted areas (i.e. < 10 ppb), CAMx NOx tends to be lower than measured NOx whereas 

CAMx NOy tends to be higher than measured NOx. We therefore conclude that CAMx is consistent with the ambient 

NOx measurements within limitations of the monitoring equipment capabilities and siting.  

We present similar scatter plots for maximum daily 8-hour average (MDA8) ozone in Figure A1. CAMx shows skill 20 
in identifying low and high ozone days, with R2 values from 0.56 (Austin) to 0.61 (Tyler). CAMx displays a positive 

ozone bias across all five regions, with mean bias (MB) ranging from 4.8 ppb (Waco) to 10.1 ppb (San Antonio). 

Emery et al. (2017) defines the criteria standards for MDA8 ozone as ± 15% for normalized mean bias (NMB) and < 

25% for normalized mean error (NME). Only Waco and Dallas-Fort Worth meet the criteria standard for NMB, while 

all regions except San Antonio meet the criteria standard for NME. 25 
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Figure A1. CAMx model performance for (left) maximum daily averaged 8-hour ozone (MDA8 O3) and (right) 
midday 12 – 3 PM local time NOX and NOy. Model output is compared to the EPA AQS ground observations for five 
regions of interest in our east Texas domain (Austin, San Antonio, Tyler, Waco, and Dallas-Fort Worth) 

 5 
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Data availability  

TROPOMI NO2 v1.3 data (doi: 10.5270/S5P-s4ljg54) and TROPOMI HCHO v1.1 data (doi: 10.5270/S5P-tjlxfd2) 

can be freely downloaded from the Copernicus Open Access Hub (https://s5phub.copernicus.eu/dhus/) or NASA 

Earthdata Hub (https://disc.gsfc.nasa.gov/datacollection/S5P_L2__NO2____1.html & 

https://disc.gsfc.nasa.gov/datacollection/S5P_L2__NO2____HiR_1.html; 5 
https://disc.gsfc.nasa.gov/datacollection/S5P_L2__HCHO___1.html  & 

https://disc.gsfc.nasa.gov/datacollection/S5P_L2__HCHO___HiR_1.html). TROPOMI NO2 v2.3.1 data can be 

freely downloaded from the S5P-PAL Data Portal (https://data-portal.s5p-pal.com/products/no2.html). NASA 

SEAC4RS data can be downloaded from NASA data archive (doi: 10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-

Cloud), and was acquired by the UC-Berkeley Cohen research team. ERA5 re-analysis hourly data on single levels 10 
(doi: 10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/#!/home). IDL code to re-grid and process the data is available upon request.  
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